- Course details
- What is computer vision (CV)?
- Course outline
- Image representation
- Pixel-wise operations
- Histogram equalization
- Template matching
- Morphology operators
- Connected components
- Color space
- Noise and filtering
- Frequency representation
- Decimation
- Interpolation
- Intro to edges
- Basic edge image
- Edge thinning
- Edge mask
- Canny edge detector
- Other edge related topics
- Frequency representation
- Unsharp filter
- Least squares
- Total least squares
- RANSAC
- Hough transform
- (m,b) parameter space
- (ρ,θ) parameter space
- BRDF
- Pinhole camera
- Digital camera
- The human eye
- 2D->2D transformations
- 3D->3D transformations
- 3D->2D transformations (3D projections)
- Perspective projection
- Orthographic projection
- What is camera calibration?
- Camera extrinsics
- Perspective projection
- Camera intrinsics
- Full camera matrix
- Calibration methods and distortions
- What and why we need features detection?
- Feature detection
- Blob detection
- Harris corner detection
- SIFT detector
- Feature description
- Template matching
- HOG
- SIFT descriptor
- SIFT feature matching
- Panoramas
- Structure from motion
- Triangulation
- Stereo matching
- Camera rectification
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Estimating the fundamental matrix
- Other 3D sensors
- The classification problem- again
- NN history
- Perceptron
- Dense layer
- Multi-layer perceptron (MLP)
- Optimization
- Softmax + cross entropy + loss
- Gradient descent
- Basic data preprocessing
- Data normalization
- Train, validation and test splits
- Fully connected net
- ConvNets
- Convolution layer
- Pooling layer
- Overfitting
- Architectures
- Alexnet (dropout)
- VGG
- ResNet (batch norm)