NN basics 2

References

- http://cs231n.stanford.edu/index.html
- <u>http://www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lectures.html</u>
- http://www.cs.cmu.edu/~16385/

contents

- Chain rule
- ConvNets
 - Convolution layer
 - Pooling layer
- Overfitting
- Architectures
 - Alexnet (dropout)
 - VGG
 - ResNet (batch norm)

Loss derivation

• How do we actually do $\nabla_W L$?

Bad idea- by hand

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

$$\nabla_{W}L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch =(

Problem: Not feasible for very complex models!

Good idea- back propagation

• We are using the chain rule for gradient calculation:

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

$$f(x,y,z) = (x+y)z$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

This is called- **the forward pass**

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$egin{aligned} f = qz & rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q \ \end{aligned}$$
 Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z} \end{aligned}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

x -2
y 5
y 5
z -4
lterative step:
chain rule on
x -2
junction
t -12
t -4

$$\frac{1}{2}$$

 $\frac{\partial f}{\partial z} = \frac{\partial f}{\partial f} \cdot \frac{\partial f}{\partial z} = 1 \cdot 3 = 3$

$$f = qz$$
 $rac{\partial f}{\partial q} = z, rac{\partial f}{\partial z} = q$
Want: $rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e a x = -2 y = 5 z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},$$

$$f(x, y, z) = (x + y)z$$

$$q=x+y$$
 $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

Backpropagation: a simple example
$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4 $q=x+y$ $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Backpropagation: a simple example
$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4 $q=x+y$ $rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

Backpropagation- conclusions

- All that we need to know in each junction is:
 - The local gradient from the junction's equation.
 - the chain rule result that was "back propagated" to the junction.

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

14

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

 $f_a(x) = ax$

= adx

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f_c(x)=c+x \qquad o \qquad rac{df}{dx}=$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

$$f_c(x)=c+x \qquad o \qquad rac{df}{dx}=$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

 $f_c(x)=c+x \qquad o \qquad rac{df}{dx}=$

 $f_a(x) = ax$

 $\frac{df}{dx} = a$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

We want to find:

$$\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1}, \frac{\partial f}{\partial w_2}$$

 $f_a(x) = ax \qquad o$

= adx

contents

- Chain rule
- ConvNets
 - Convolution layer
 - Pooling layer
- Overfitting
- Architectures
 - Alexnet (dropout)
 - VGG
 - ResNet (batch norm)

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

between a row of W and the input (a 3072-dimensional dot product)

Convolution Layer

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

32x32x3 image 5x5x3 filter 32 **Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products" 32 Number of weights: $5 \times 5 \times 3 + 1 = 76$ (vs. 3072 for a fully-connected layer) (+1 for bias)

Convolution Layer

Convolution Layer

activation map

consider a second, green filter

Convolution Layer

activation maps

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

(total number of parameters: $6 \times (75 + 1) = 456$)

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Output

During convolution, the weights "slide" along the input to generate each output

Recall that at each position, we are doing a **3D** sum:

$$h^r = \sum_{ijk} x^r_{ijk} W_{ijk} + b$$

(channel, row, column)

But we can also convolve with a **stride**, e.g. stride = 2

Output

But we can also convolve with a **stride**, e.g. stride = 2

Output

But we can also convolve with a **stride**, e.g. stride = 2

Output

But we can also convolve with a **stride**, e.g. stride = 2

Input

Output

- Notice that with certain strides, we may not be able to cover all of the input

- The output is also half the size of the input

We can also pad the input with zeros. Here, **pad = 1, stride = 2**

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

We can also pad the input with zeros. Here, **pad = 1, stride = 2**

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

We can also pad the input with zeros. Here, **pad = 1, stride = 2**

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

We can also pad the input with zeros. Here, **pad = 1, stride = 2**

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Output

Convolution: How big is the output?

p

stride s

p

0	0	0	0	0	0	0	0	0
0		♦						0
0		ke	rnel	k				0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

width w_{in}

We can choose different parameters for the convolution:

$$w_{out} = \frac{w_{in} + 2p - k}{s} + 1$$

Such that w_{out} is an int.

• What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?

- What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
- Their receptive fields are the same!

two successive 3x3 convolutions

5x5 convolution

- What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
- Their receptive fields are the same!
- Less weights to learn! assuming C channels input and output- the single 5x5 CONV layer would contain $C \times (5 \times 5 \times C) = 25C^2$ parameters, while the three 3x3 CONV layers would only contain $2 \times (C \times (3 \times 3 \times C)) = 18C^2$.

- What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
- Their receptive fields are the same!
- Less weights to learn! assuming C channels input and output- the single 5x5 CONV layer would contain $C \times (5 \times 5 \times C) = 25C^2$ parameters, while the three 3x3 CONV layers would only contain $2 \times (C \times (3 \times 3 \times C)) = 18C^2$.
- non-linearities between the layers make their features more expressive.

- What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
- Their receptive fields are the same!
- Less weights to learn! assuming C channels input and output- the single 5x5 CONV layer would contain $C \times (5 \times 5 \times C) = 25C^2$ parameters, while the three 3x3 CONV layers would only contain $2 \times (C \times (3 \times 3 \times C)) = 18C^2$.
- non-linearities between the layers make their features more expressive.
- In many architectures 2 layers of 3x3 kernel is the way to go!
- Adding strides (and padding where needed) can make the receptive fields even larger with fewer weights to learn.

contents

- Chain rule
- ConvNets
 - Convolution layer
 - Pooling layer
- Overfitting
- Architectures
 - Alexnet (dropout)
 - VGG
 - ResNet (batch norm)

Pooling

For most ConvNets, **convolution** is often followed by **pooling**:

- Creates a smaller representation while retaining the most important information
- The "max" operation is the most common

Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

Max Pooling

Single depth slice

у

max pool with 2x2 filters and stride 2

Example ConvNet

10x3x3 conv filters, stride 1, pad 1 2x2 pool filters, stride 2

Figure: Andrej Karpathy

Layer depth

- First layers detect simple patterns (colors, edges, etc.)
- Deeper layers detects more complex patterns which is built upon the output of the first layers.
- Great example:
- <u>https://www.youtube.com/watch?v=AgkflQ4lGaM</u>

6	100	10	¥.	£.	10	00	6				162	一	1165	40	2			1	
٢	1	1	No.	$\mathcal{K}_{\mathcal{C}}$	1.	38		01	- Leu			2886	12.	and the second s				¥ T	B
1	6	de.	¥.	-	S.	-0.6						1			1				
	4	3			si.	PY		a .	2	and the second s	N.N.N.	5997	Ŷ.	14	\$¥	The second s			1
- Ale	14	×	*		-			1	321	alle a	190	150	26	-	-		-000	n >	P Re
100			(in	-	S.	-	~		Yat	- 68	C	1	1	- 49	<i>de</i>	ie e			1
1	N.S.		The second	X	14			1	9.3	No.	- 35	21		10	物	新建		0	
14			all a			-2	0	-	5	5	344	188 -	5 6 8		1				8 8
			E.			-On-	5			1010	Si	ane.	470	(i) (ii)	6			0	
-22	-	#	Ŕ	P	and the	TH	-		DIE	<u>.</u>	S.	ŧ,	20	1	201	No.		1	TA
1975	100		Sec.	The second	Net State	11 4	5			100	81	3	128	12	×.	Ş	6	FA .	- Ma
	14		¥	¥.	*		4	7	Pt Sum		ja ja	34		211		5	F		
24	32	8.	2	130	100	No Viela	I	.9		10	0	٢	100	0	0	8	6		21
1.639	de.	10	12			((V)	14	0		ی	0	ŝ		- AR	1.01	Seal L		9.0	
La	yer	4	3	101	1		e	•		Lay	yer	5	16	12	18	10 ⁴	0	19:-	10

• Conv colab

contents

- Chain rule
- ConvNets
 - Convolution layer
 - Pooling layer
- Overfitting
- Architectures
 - Alexnet (dropout)
 - VGG
 - ResNet (batch norm)
Overfitting

- Overfitting: analysis that corresponds too closely or exactly to a particular set of data and may therefore fail to fit additional data or predict future observations reliably.
- Underfitting: insufficiently modeling the relationship of the data points.

Overfitting

- Overfitting is one of the biggest problems in NN.
- It is said that for a net to not overfit we need X10 data-samples as weights.
- What to do when you don't have millions of examples?

Example of trying to fit small dataset to a model with a lot of DOFs.

Remove outliers

- Clean the data so that that its variance would be relatively small.
- With a small dataset- even one outlier datapoint can be problematic.

bat

Also a bat – but not what we looked for

Augmentations

- Technique used to increase the amount of data by adding slightly modified copies of already existing data
- Examples: rotation, translation, scale, shear, brightness, contrast, noise, crop, warping etc...

Cross validation

- Partitioning a sample of data into complementary subsets and validating the analysis on the other subset. Validation results are averaged over the rounds to give an estimate of the model's predictive performance.
- The final step is to train the model on the entire dataset and by doing you get more training data because you don't need a validation set.
- Downside: training time is longer.

	//////			1/////		-17773	(NNNI	/////	V V V I	
	Training Data						Validation		Holdout	
									XXXI	
	Training Data				Validati	on			Holdout	
	Training Data			Validation					Holdout	
	Training Data	Valida	tion						Holdout	
	Validation	Training	Data						Holdout	
\geq	//////								///	
0%	10%	20%	30%	40%	50%	60%	70%	80%	90%	100

Transfer learning

- Take a pretrained model on a larger similar dataset and train again a subset of its layers to your new dataset.
- The idea is that the features learned in the first layers are still relevant to your data, and all you need is to train the more complex layers near the output to learn your new data.

Transfer learning

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

2. 0111411 2 414001 (0 0140000)	2. Small Dataset	(C classes)
---------------------------------	------------------	-------------

FC-C	K
FC-4096	Reinitialize
FC-4096	this and train
MaxPool	
Conv-512	
Conv-512	
MaxPool	
Conv-512	
Conv-512	
MaxPool	Freeze these
Conv-256	
Conv-256	
MaxPool	
Conv-128	
Conv-128	
MaxPool	
Conv-64	
Conv-64)
Image	

	very similar dataset	very different dataset	
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages	
quite a lot of data	Finetune a few layers	Finetune a larger number of layers	

Overfitting- the upside

- Overfitting isn't always bad- there is a known trick to check the correctness of your NN: take a small batch of data and try intentionally to overfit it!
- This will show you if you have any underlying problems in your net architecture before you start train.

contents

- Chain rule
- ConvNets
 - Convolution layer
 - Pooling layer
- Overfitting
- Architectures
 - Alexnet (dropout)
 - VGG
 - ResNet (batch norm)

Alexnet

- The winner of the 2012 IMAGENET competition (classification % of top 5 out of 1000 labels).
 Image: 224 (height) × 224 (width) × 3 (channels)
- 224X224X3 input.
- 8 learnable layers.
- 61M parameters.

Alexnet

- Interesting facts:
 - The first winner of IMAGENET who used NN- started the NN trend we are feeling now.
 - Not really used today.
 - Used dropout as a technique to avoid overfitting.

dropout

- Neuron is dropped from the network with a probability of 0.5. When a neuron is dropped, it does not contribute to either forward or backward propagation.
- Every input goes through a different network architecture, as a result, the learnt weight parameters are more robust.
- During testing, there is no dropout and the whole network is used, but output is scaled by a factor of 0.5 to account for the missed neurons while training.
- Dropout increases the number of iterations needed to converge by a factor of 2.

(a) Standard Neural Net

⁽b) After applying dropout.

VGG16

- Winner of IMAGENET 2014 classification challenge.
- 16 layers (there are also other variations with 11,13 and 19 layers).
- 138M parameters.
- Used small receptive fields with stacked conv layers (shown before)compared to 11X11 and 5X5 in AlexNet, her there is only 3X3 layers.
- Still in use today!

ResNet

- Winner of IMAGENET 2015 classification challenge.
- 152 layers (there are also other variations with 18,34,50 and 101 layers).
- 60M parameters (<0.5X VGG16!!!).
- Still in use today!

ResNet

- Interesting blocks:
 - Batch norm (for vanishing gradient problem).
 - Residual block (for train accuracy degradation) out of scope.

residual connection